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SUMMARY 

We consider a problem which arises in the numerical solution of the compressible two-dimensional or 
axisymmetric boundary-layer equations. Numerical methods for the compressible boundary-laycr equations 
are facilitated by transformation from the physical (x, y) plane to a computational ( r ,  q )  plane in which the 
evolution of the flow is ‘slow’ in the time-like 5 direction. The commonly used Levy-Lees transformation 
results in a computationally well-behaved problem, but it complicates interpretation of the solution in 
physical space. Specifically, the transformation is inherently non-linear, and the physical wall-normal 
velocity is transformed out of the problem and is not readily recovered. Conventional methods extract the 
wall-normal velocity in physical space from the continuity equation, using finite-difference techniques and 
interpolation procedures. The present spectrally accurate method extracts the wall-normal velocity directly 
from the transformation itself, without interpolation, leaving the continuity equation free as a check on the 
quality of the solution. The present method for recovering wall-normal velocity, when used in conjunction 
with a highly accurate spectral collocation method for solving the compressible boundary-layer equations, 
results in a discrete solution which satisfies the continuity equation nearly to machine precision. As 
demonstration of the utility of the method, the boundary layers of three prototypical high-speed flows are 
investigated and compared: the flat plate, the hollow cylinder, and the cone. An important implication for 
classical linear stability theory is also briefly discussed. 
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1. INTRODUCTION 

In modern aerodynamics, the boundary-layer approximation is an invaluable tool of widespread 
applicability. Although it is still beyond the capability of existing supercomputers to solve the 
compressible Navier-Stokes equations for complete aerodynamic configurations, it is common- 
place for engineering purposes to patch inviscid ‘outer’ solutions to the Euler equations with 
‘inner’ solutions to the boundary-layer equations to obtain realistic lift and drag estimates. 
A different application, and the motivation for this work, lies in the area of stability and 
transition, for which solutions to the boundary-layer equations provide the mean velocity and 
temperature distributions necessary for linear and non-linear stability analyses. In this latter 
context, accuracy is quite important. since, in general, the stability of wall-bounded flow is 
extremely sensitive to variations in the mean. 
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The boundary-layer equations define an Initial-Boundary-Value Problem (IBVP) in which the 
streamwise spatial co-ordinate is time-like. The solution is obtained by streamwise marching 
procedures. The equations are extraordinarily ‘stiff’, particularly for high-speed compressible 
flow. Consequently, only implicit marching techniques have met with practical success (for 
example, see References 1 or 2). Depending on the geometry of the flow, the time-like derivative 
may either enhance or undermine the diagonal dominance of the Jacobian used in the iteration 
procedure. To facilitate the numerical solution it is customary to transform the boundary-layer 
equations from physical (x, y) space to a computational (& q )  space in which the time-like 
derivative has ‘nice’ properties. In the ideal situation, a similarity solution exists, and the time-like 
derivative vanishes identically with the proper similarity transformation. Similarity solutions 
exist, however, only for a limited class of flows (e.g. flow over a flat plate in the absence of 
a streamwise pressure gradient). For non-similar flows, it is desirable that the time-like evolution 
in the transform plane be ‘slow’, and that the time-like derivative contribute to diagonal 
dominance of the Jacobian. 

One transformation which exhibits these traits for a wide class of boundary-layer flows is that 
known commonly as the Levy Lees tran~formation.~* Although the Levy-Lees transformation 
results in a computationally well-behaved problem, it complicates interpretation of the results in 
physical space, relative to the more straightforward transformations used for specialized applica- 
tions by Duck4 and by Pruett and Streett.’ First, it i s  inherently non-linear, an additional reason 
why fully implicit methods are necessary. Second, the physical c-velocity is transformed out of the 
computational pi-oblem and is not easily recovered. For some applications, this is not of major 
concern. For example, classical linear stability analyses, which invoke the parallel-flow approx- 
imation, disregard the wall-normal velocity. It is now recognized, however, that the non-parallel 
effects on the stability of a high-speed flow can be ~ignificant,~ and methods are being adapted 
and developed to treat non-parallelism. Among these are Spatial Direct Numerical Simulation 
(SDNS),6 Multiple-Scale analyses (MS),7.8 and a recent scheme based on the Parabolized Stability 
Equations (PSE).9,10 Each requires accurate determination of wall-normal velocity, and the MS 
and PSE methods require its gradient as well. The quality (smoothness) of the solution is of 
particular importance whenever the application requires diKerentiated velocities. 

Conventional methods exploit finite-different techniques and obtain the wall-normal velocity 
from the continuity equation.” The method presented here, designed as a companion to the 
spectral collocation method for the Compressible Boundary-Layer Equations (CBLE) developed 
by Pruett and Streett,’ enjoys two major advantages over conventional approaches. First, the 
wall-normal velocity is computed to spectral accuracy. Second, the wall-normal velocity is 
extracted directly from the co-ordinate transformation, leaving the continuity equation available 
as a check on the quality of the solution. Using the method of Pruett and Streett’ for the CBLE, 
and the present method to extract wall-normal velocity, we obtain a discrete solution which 
satisfies the continuity equation nearly to machine precision. Moreover, we obtain second 
derivatives of temperature and velocity distributions which are smooth to at least seven decimal 
places. 

At the heart of the present method lies the non-trivial evaluation of the quantity qx.  In 
Section 2 the governing equations and non-dimensionalization are discussed, and the Levy Lees 
transformation is defined. Section 3 details the numerical method, focusing on two independent 
derivations for q x ,  both of which lead to relatively complicated expressions. In Section 4, in which 

* White,3 however, refers to this as the Illingworth-Levy Lees-Dorodnitsyn Probstein-Elliot transformation, mention- 
ing also the contribution of Mangler. 
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we validate the method, both derivations of yx are shown to give virtually identical numerical 
results. Section 5 provides an application of the method whereby the high-speed boundary layers 
of a flat plate, a hollow cylinder and a sharp cone are compared, with particular attention to their 
respective wall-normal velocity distributions. An important implication regarding the linear 
stability of the flow along a cone is also discussed. Finally, brief concluding remarks are offered in 
Section 6. 

2. GOVERNING EQUATIONS 

We consider the compressible, laminar boundary-layer flow along a two-dimensional or axisym- 
metric body at zero angle of incidence. Let x be the arc length along the body measured from the 
stagnation point, let J be the wall-normal co-ordinate, and let r = r o + y  cos qb be the radial 
co-ordinate from the axis of revolution, as shown in Figure 1, where ro (x )  is the body radius and 
qb(x) is the angle formed by the surface tangent and the axis of revolution. If u and L] are the 
dimensionless velocity components in the x and y dircctions, respectively, and T, p and p are, 
respectively, the dimensionless temperature, density and viscosity, then the flow is governed by' 

Shock wave 7 / 

Figure 1. Body-fitted co-ordinate system 



136 C. DAVID PRUETT 

where we have exploited the following transformations: 

Y e  

( j  = 01, 

( j =  1 ) .  

In equations (1) and (2), the subscripts ‘e’ designate values at the boundary-layer edge, which vary 
only in x, and which are assumed to be known, for example, from the solution of the Euler 
equations. Details of the derivation of equations ( I )  can be found in Reference 1. Briefly, equations 
( 1 )  follow from the compressible Navier-Stokes equations via the boundary-layer approxima- 
t ioq3 and describe, respectively, conservation of mass, streamwise momentum and energy. For 
j = 0 and j = 1 ,  equations (1) describe, respectively, laminar two-dimensional and axisymmetric 
boundary-layer flow. 

bollowing Reference I ,  lengths, velocities and density in equations (1)  and (2) have been 
normalized by the arbitrary reference values L*, U: and p,?, respectively. The reference temper- 
ature is taken to be T,?=u,*~/C,*, where C: is the specific heat at constant pressure, and the 
reference viscosity p: =p*(T,?). Throughout this paper, dimensional quantities are denoted by an 
asterisk. 

The parameters which arise in equations (1) and (2) as a result of non-dimcnsionalization are 
the Reynolds number Re,  the Prandtl number Pr and the ratio of specific heats y. Specifically, 
these are defined as 

where C,* is the specific heat at constant volume and K: is the (reference) value of the thermal 
conductivity at the reference temperature, T,?. Here, we have assumed the fluid to be an ideal gas. 
For ideal gases. C: and C: are constant, and the ideal gas constant R,* = C$ - C:. We note that 
Mach number appears not as a true parameter but as edge data, where M e  = u:/J(yR,$ T:). 
Finally, equations (1) are closed by assuming p ( 0 )  to vary according to Sutherland’s law, namely 

83’2(1 + C , )  198.6”R f i =  cl=-. 
u+c1 ’ Ti? 

Tranqformation (Zc, d), from the physical space (x, y) to be computational space (c ,  q), is known 
as the Levy Lees transformation and is commonly used to facilitate the numerical solution of the 
boundary-layer equations. In the experience of the author, the Levy--Lees and associated 
transformations (2) are essential for the accurate numerical solution of a non-similar boundary- 
layer flow in which the streamwise velocity profile becomes ‘thinner’ as one proceeds down- 
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stream, c.g. boundary-layer flow along a sharp cone. For example, when the spectral collocation 
method of Pructt and Street? using thc straightforward transformation of Duck4 is applied for 
the casc of M,=6.8 flow over a 7” half-angle cone, the Jacobian of the iteration procedure 
becomes very ill-conditioned. For a highly resolved grid, the condition number can be O(lO”) or 
larger. In contrast, when transformation (2) is incorporated into the method, the condition 
number is typically O(10’). In the former case, the extreme ill-conditioning prevents full conver- 
gence of the iteration procedure, resulting in an excessively noisy solution. 

The utility of the Levy Lees transformation, therefore, is that it results in a well-conditioned 
governing system for an entire class of axisymmetric or two-dimensional boundary-layer flows. It 
is inherently non-linear, however, because the transformation depends upon the solution itself. 
Since solution methods for the boundary-layer equations are implicit and. hence, iterative, the 
non-linearity of the transformation is not a major problem. The difficulty with transformations 
(2), howcver, with which we deal in the next section, is that equation (2b) ‘buries’ the wall-normal 
velocity. 

2. NUMERICAL METHODS 

From equation (2bj one obtains the following expression for the wall-normal velocity 11 in the 
transform ( r ,  q )  plane: 

Provided the quantities on the right-hand side of equation (4) are known, the determination of u is 
trivial. The difficulty with equation (4), however, is that a closed-form exprcssion for yx is not 
readily available, nor is its form simple. Because of the complicated nature of q x ,  and because we 
are unaware of any previously existing derivation for the general case, we present two indepen- 
dent derivations which wc then use for (numerical) cross-validation. In the first method, q, is 
obtained from the Jacobians of transformation (2c, d) and its inverse. In the second method, q x  is 
shown to be the solution of a linear Fredholm integral equation whose coefficients are construc- 
ted from information available from the solution of equations (1). For both methods, the 
computational effort required to evaluate qx (and, subsequently, u) is insignificant relative to that 
required to solve boundary-layer equations (1). For brevity, we have omitted most of the details of 
thcsc somewhat tedious derivations. The intcrested reader can find the complete derivations in 
Reference 12. 

Before proceeding, we note that the evaluation of t in the boundary-layer equations (l), and 
both methods for extracting c, make use of the inverse transformation corresponding to equations 
(2c, d). Whereas the inverse of (2c) is straightforward and is omitted, the inverse of (2d) requires 
the solution of a quadratic equation which results in the following: 

where 
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Note that the planar ( j = O )  expression must be evaluated to obtain y,, prior to evaluation of the 
axisymmetric ( j =  1) expression, 

Method 1 

From the Levy--Lees transformation (2c, d) we obtain 

dy - dy 8y d t  
dx dy 25 dx'  
-_ -- - - 

To derive equation (6), we have made use of the fact that the product of the Jacobians of the 
transformation and its inverse must yield the 2 x 2 identity matrix. Two of the factors necessary to 
evaluate equation (6) are easily obtained from equations (2c, d) namely 

The remaining factor, y; ,  is complicated. After straightforward, though tedious, differentiation of 
equation (5) with respect to 5 ,  including the use of Leibnitz' rule to differentiate beneath the 
integral sign, we obtain 

As in the case of equation (5) ,  one must evaluate the planar ( j = O )  expression prior to the 
axisymmetric ( j =  1) expression. The wall-normal velocity 2 j  follows immediately from equations 
(4) and (6)--(8). 

We defer discussion of the procedure for evaluating the integrals in equations (5) and (8) until 
after the presentation of method 2. 

Method 2 

In this method, we differentiate equation (2d) implicitly with respect to x to obtain the 
following expression: 

The derivation of equation (9) is somewhat involved, requiring the use of the chain rule to 
evaluate 8#/8x, Leibnitz' rule to differentiate under integral signs, and the following integral 
transformation: 
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where h is an arbitrary function of y, and where dy/dq is given in equation (7b). Complete details 
can be found in Reference 12. 

Expression (9) is a linear Fredholm integral equation of the form 

w(5. $4 (4, l?)dl?+P(S, v) ,  

where 

and where 

and 

d 4  
J tan 4 -, 1 d p  1 du 1 d t  

pe dx u, dx 25dx dx 
f(t)=- c+- e-- ___ ' 

dx 

We relegate thc details of the discretization of equation (11) to the Appendix. 
In practice, whether by method 1 or method 2, evaluation of yx occurs along stations of 

constant 4. For fixed 5, the integrals which appear in both methods [for example, in equations 
(1  2f, g)] assume the form 

where h is an arbitrary function of y.  It remains to describe their spectrally accurate numerical 
approximation. For this purpose, let the computational domain 0 < y < yMAX be partitioned into 
N subintervals such that O = q o < y , < q 2 < . . . < y N = y M A X .  At the grid points q., we have 

If h,,=h(q,,), and in and Ai,, are the discrete approximations of i(yn) and Ai(qn), respectively, then 
the discrete analogue of equation (13) is the following: 

n 

in= 1 Aik, Ail =Qh. 
k = O  
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In equation (15), Q is an N x ( N +  1)  quadrature operator, and, for convenience, the following 
vector notation has been adopted: 

Conventions similar to equation (16) hold for all other vector quantities. 
Equation (15) is general in the sense that Q can represent any quadrature rule. For example, if 

the trapezoidal quadrature rule is adopted, then Q is bidiagonal and i approximates i (q)  to 
second-order accuracy. For the hydrodynamic stability applications which motivate this work, 
we are interested in attaining highly accurate and smooth solutions. Accordingly, we specialize 
Q to a collocation method based on Chebyshev polynomial approximation. for which Q is 
a dense matrix and for which spectral accuracy is attained. The collocation method applied here 
to the extraction of the wall-normal velocity is adapted from the method described in Reference 
2 for solution of thc compressible boundary-layer equations, to which the reader is referred for 
greater detail. 

In brief, we approximate continuous non-periodic function h ( y )  on [ - 1, 11 by a finite series 
expansion h,(?j) in an orthogonal basis set of Chebyshev polynomials T,(ij), namely 

where coelficients ĥ , are termed the 'spectrum' of hk (q). Using the 'natural' Gauss-Lobatto set of 
collocation points 

nn 
N 

Q,=cosz,, z,=- (n=O, 1,2, .  . . , N ) ,  

we obtain from equation (17) the discrete Fourier cosine transform 

nxk I$ 
h, = h,(V,) = 1 h;, cos -. 

k = O  N 

The corresponding discrete inverse transform gives the spectrum i, 

where 

2, k=O or k = N  i 1, O < k < N .  
ck = 

It is convenient to express equation (20) as a matrix-vector operation 
I 

h = PNh, (21) 

where PN is a dense ( N +  1)  x ( N +  1) matrix whose elements are available by inspection from 
equations (20). 
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Interpreted in the light of transform pair (19) and (20), equations (17) define the speclral 
interpolation polynomial, exact, by definition, at the collocation points. Unlike polynomial 
interpolating series defined on equally spaced intervals, series (17) converges uniformly to h(q) as 
N+ m. Moreover, it can be shown that, for continuously differentiable functions h, coefficients 
h?, decay to zero faster than any finite power of 1/N as N + K .  This is termed 'spectral 
convergence'. 

Now, to form quadrature operator Q, we consider 

In matrix-vector form, equation (22) becomes 

where El is an N-vector and R N  is a dense N x ( N  + 1) matrix whose elements are obtained from 
equation (22) with the help of equations (17) and (18) as follows: 

From equations (21) and (23) ,  the N x ( N  + 1) spectral quadrature operator Q is defined as 

Q = R N  P,. (25) 

Finally, we note that a continuous mapping q = q($  is necessary to take the natural Chebyshev 
domain - 1 d fj < 1 onto the computational domain 0 < q < q M A X .  Such a mapping is also useful to 
redistribute collocation points, clustering them in regions of high gradients. In practice, the metric 
dij/dq, computed either analytically, or numerically to spectral accuracy, is incorporated directly 
into quadrature operator Q. 

We close by summarizing briefly the complete algorithm for extracting wall-normal velocity, as 
integrated into the spectrally accurate boundary-layer code of Pruett and Streett.' Following 
Reference 2, governing Equations (1 ) are solved for discrete marching steps to < 4, < t2 <. . . , 
each corresponding to a unique streamwise station. Immediately available from the converged 
boundary-layer solution at each fixed ( are the quantities 0, Ot ,  O,, and t which appear in the 
integrands of equations (54, (8) and (12). These integrals are evaluated numerically to spectral 
accuracy following the quadrature procedure of equations (13) - (25) .  In the discrete approxima- 
tion, these integrals are vector quantities. Also ne ded at  each discrete < are certain scalar 

equation (8) of method 1. These are readily evaluated from the discrete edge and geometry data 
T[x(()], where TE(P,, u,, pc ,  ro ,  4) .  Currently, we use cubic splines for smooth interpolation of 
t as well as for computation of derivatives of the form dT/dx. Following the evaluation of all 
necessary scalar and vector quantities at fixed 4, the discrete approximation of qx is obtained from 
either method 1 or method 2. Wall-normal velocity is obtained subsequently from equation (4) 
and the boundary-layer solution (V,  F ,  0). Despite the awkward nature of the expressions which 
comprise methods 1 and 2, their evaluation is straightforward, is computationally efficient and 
involves only the numerical machinery already in place for the solution of boundary-layer 
equations (1). 

quantities: for example, I(() and g(t) in equations ( i: 2 )  of method 2, or the coefficient of y,* in 
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4. CODE VALIDATION 

Our purposc here is to offer rcasonable validation of the present method. To obtain the results of 
this section, we solve equations (1) by the fully implicit method of Pruett and Streett,’ which has 
been modified to incorporate the Levy Lees transformation (2). We exploit second-order back- 
ward differencing in the time-like dimension, although the method allows up to fifth-order 
differencing. For convenience, the marching scheme uses equally spaced steps in physical space. 
A further modification permits the option of either preconditioned Richardson iteration or 
Newton iteration within each implicit marching step. Typically, we iterate using the Richardson 
scheme until the discrete residual is small enough so that one final (computationally intensive) 
Newton iteration achieves ‘full’ convergence. Following convergence of the iteration, the wall- 
normal velocity is extracted by the spectral collocation method presented herein. All com- 
putations assume that the wall is adiabatic, although the boundary-layer code permits fixed- 
temperature wall conditions as well. The following transformation has been used to map from the 
Chebyshev domain i j ~ [  ~ 1, 11 to the computational domain ~ E [ O ,  qMax], as discussed in the 
previous section: 

0.5qMAXL1 -tanh(a)](l-4) 
‘(’)= 1 -tanh[0.50(1 -4)l . 

In equation (26), CJ is a free parameter which controls the strength of stretching. The results shown 
use qMAX = 21 and CJ = 0.7, chosen after some numerical experimentation. For a well-resolved grid, 
the solution is not particularly sensitive to the choice of CJ. However, it is important that qMAX be 
sufficiently large so that the far-field boundary condition does not ‘pinch’ the boundary-layer 
flow. Our experience is that qMAX should be chosen so that y(qMMAX) is 2 to 3 boundary-layer 
displacement thicknesses from the wall. 

We take the flow parameters and the geometry of the validation case from the high-speed 
(MI = 8.0) wind-tune1 experiment of Stetson et ~ 1 . ’ ~  on a sharp cone at zero angle of incidence. 
These are 

4 = 7‘, M e =  6.8, T,* = 128’ R, Re1 = 1.43 x lo6 ft-’ 

where R e ,  is the unit Reynolds number based on edge conditions. Except quite near the tip, the 
flow on a sharp cone exhibits conditions at the boundary-layer edge which are approximately 
constant. Accordingly, we assuqe that the edge values remain constant in x, and we set reference 
values equal to their respective edge values, e.g. u: = u$.  We note, however, that both methods for 
extracting v have been validated for the fully general case in which both the geometry and edge 
data vary with x. 

Figure 2 compares the wall-normal velocity obtained by the present method with that of 
a second-order finite-difference method. The parameter values are those given in equation (27), 
and the comparison is made at x* = 2.0 ft. To obtain the finite-difference results, we solve the 
boundary-layer equations using the time-honoured method of Harris and Blanchard. Docu- 
ment’ describing their code, however, does not discuss extraction of the wall-normal velocity, and 
in their baseline code, ZI is accurate only to first order,” inadequate for our purposes here. 
Recently, Changi4 has modified their algorithm independently to obtain the u-velocity to 
second-order accuracy. The ‘finite-difference’ results presented in Figure 2 were obtained using 
Chang’s method, with 102 points in the wall-normal direction and an extremely small marching 
step size of Ax* = 0.005 ft. For clarity, only every fourth point is plotted. The spectral results 
shown for comparison were obtained using the same Ax but only 42 points in y~,  sufficient for 
‘engineering’ accuracy. The results are virtually indistinguishable. 
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Figure 2. Comparison of spectral and second-order finitedifference methods for the wall-normal velocity at x* = 2-0 ft 

Because the smoothness of the velocity profiles is of prime concern, all results to  follow were 
obtained using 102 ( N  = 101) collocation points in the wall-normal 9 direction, far more than the 
40 or so necessary to obtain 3-digit engineering accuracy. In fact, as will be shown, at this high 
resolution, velocity and temperature distributions at fixed 5 are smooth to 13 digits. Furthermore, 
for the results to follow, we have used a much higher increment of Ax* = 0 1  ft in the marching 
direction, sufficient for validation studies. 

Since the boundary-layer equations are derived by neglecting certain terms of the 
Navier Stokes equations, it is of some interest to compare present results with schemes based on 
approximations which are ‘closer’ to Navier-Stokes. Figure 3 compares the radial velocity 
obtained by the present method with the results of a parabolized Navier Stokes (PNS) calcu- 
lation using the wall-tested code of Korte.” The PNS code exploits finite-difference techniques 
and is of second-order accuracy in both the marching (axial) s and cross-stream (radial) 
r directions. The velocities (u’, v’) computed by the PNS code are in Cartesian co-ordinates, and for 
comparison, the results of the boundary-layer calculation are transformed accordingly. The PNS 
scheme is fully explicit and the marching step size is the maximum allowed by stability (CFL) 
considerations. The PNS computation uses 150 grid points in the radial dimension, approxim- 
ately 30 of which lie within the boundary layer. At this resolution, the PNS calculation is fairly 
severely underresolved in the radial direction as indicated by the clearly visible grid-scale 
oscillation. (According to Reference 1, approximately 200 points are necessary using second-order 
finite-difference methods to resolve the boundary-layer region sufficiently to capture the temper- 
ature gradient at the wall to 01% error.) Unfortunately, it is impractical for existing computer 
resources to pack significantly more points within the boundary layer since, in the fully explicit 
PNS code, the marching step siLe decreases as Ar& , where Ar,,, is the minimum grid interval in 
the radial dimension. Similar computational barriers were encountered when attempting to 
compare the present method against a compressible Navier-Stokes (NS) calculation using the 
finite-volume code of Jacobs,’“ for which it was impractical to resolve the flow to the degree 
desired. Despite these difficulties, the radial velocities obtained from the PNS and boundary-layer 
(BL) computations, which are compared at s=3.28 ft ( 1  m) in Figure 3, are in reasonable 
agreement. The maximum velocity, the boundary-layer edge location and the far-field decay of 0’ 
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1;igure 3.  Radial velocity at s*=3.28 ft (1 m) 

all agree well. We also note that the shock obliqueness anglc derived by thc PNS calculation is 
about 1 1 ", for which the corresponding post-shock Mach number is 6.8, in concurrence with the 
experimental results of Stetson et ~ 1 . ' ~  and the edge Mach number used for the BL calculation. 
We further mention that the (underresolved) NS" and PNS" calculations are in close agree- 
ment. 

The present method has been further validated by Kopriva,17 who has employed the spectral- 
collocation BL code to check recent adaptations of his spectral multidomain code (inviscid) to 
incorporate the viscous terms of the CNSE. Agreement between Kopriva's moderately resolved 
NS computations and the present method is quite good for test cases which include Mach 2 flow 
along a circular cylinder and Mach 2.2 flow over a flat plate. 

The previous checks against existing codes assure us that there are no grievous errors in the 
current method of extracting wall-normal velocity. We now turn to self-consistency checks. One 
motivation for developing independent methods for evaluating qx  is to provide a check otherwise 
unavailable. For the same test case as before, with parameter values given in equations (27), 
Figure 4 compares tix at x* = 2.0 ft as computed by methods 1 and 2. These results appear 
virtually idcntical in Figure 4, and, in fact, they agree to a1 least 1 I significant digits at every 
gridpoint. 

As mentioned in Section 1, the current method also leaves the continuity equation available as 
a chcck on the quality of the discrete solution. For this purpose, i t  is preferable to expand the 
continuity equation in terms of the physical co-ordinates, whereby we obtain the following 
expression, valid for flat plate, hollow cylinder and cone geometry: 

(28) 
i?(pu) c?(pii) pu sin d, . cos d, -$-+Jy+Jy = 0. 

ax 2.v 

Figure 5 presents the discrete residual of equation (28) at x* = 3.0 ft along the cone, computed by 
summing the four terms on the left-hand side. Again, the parameter values arc those given in 
equations (27). Derivatives are evaluated in computational space by the appropriate chain rules, 
thereby avoiding interpolation in physical space. The continuity equation is satisfied to approx- 
imately 11 orders of magnitude. That there remains considerable structure in the wall-normal 
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Figure 4. Comparison of alternative derivations of i?q/Sx at x* =2.0 ft 

- 4  
0.0 0.5 1.0 1.5 2.0 2.5 

Figure 5. Residual of the continuity equation 

distribution of the residuals suggests that, with further tuning of G and N ,  one could likely drive 
the residual at least another order of magnitude toward machine zero (10- 14). 

One final measure of the quality of the spectral numerical method is the decay of the spectra 
[refer to equation (20a)l as shown at station x* = 3.0 ft along the cone in Figure 6. The decay of 
the temperature, u-velocity and u-velocity spectra each by at least 13 orders of magnitude implies 
that the solution is smooth to nearly the full 14-digit precision of the (Cray 2) machine. The linear 
decay rate on the logarithmic scale is indicative of ‘spectral convergence’, by which we mean that 
truncation error decays faster than any finite power of 1,” as N+m. 

Our interest in an accurate and smooth solution is not just academic. Analyses of stability 
based on parallel linear stability theory result in eigenvalue problems which require first and 
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Figure 6. Decay of the Chebyshev spectra 

second partial derivatives with respect to y of both the mean u-velocity and the mean temper- 
ature. In addition, analyses based on non-parallel theory require the mean c-velocity and its 
derivatives as well. For N = 101, each spectrally accurate numerical diffcrentiation of the bound- 
ary-layer solution results in a loss of significance of 2 to 3 digits due to the unavoidable 
magnification of round-off errors. Yet because of the initially high quality of the solution, we 
obtain first and second derivatives which are smooth to at  least 10 and 7 digits, respectively. 

Finally, we comment briefly on computational efficiency. For N = 101, the spectral collocation 
method of Pruett and Streett2 modified for the Levy-Lees transformation (2) requires slightly less 
than one CPU second per marching step on a Cray 2 supercomputer to solve boundary-layer 
equations (1). Of this second, extraction of the wall-normal velocity by method 2 consumes 
a small percentage, whereas the computational requirements of method 1 are virtually negligible. 
It was originally thought that the integral equation method (method 2) might enjoy some 
advantages in the distribution of error. However, from the data for Figure 4, it appears that any 
such advantage is insignificant. 

5. APPLICATION 

We now turn to an application of the method to a problem of both long-standing and immediate 
interest which concerns the stability characteristics of the boundary layers of cylinders and cones 
relative to those of the more commonly studied flat plate. While it is beyond the scope of this 
paper to address stability theory per sr, some light is shed on stability issues by comparing 
boundary-layer 'profiles' for the flat plate, the hollow cylinder and the cone. 

Here, we consider the same flow parameters and cone geometry given in equations (27). 
Presented for comparison, the hollow cylinder can be regarded as the axisymmetric equivalent of 
the flat plate (that is, the boundary layer is assumed to have no thickness at the sharp leading 
edge). The radius of the cylinder is taken to be r$ = 0.3684 ft, equivalent to that of the cone at 
station x* = 3.0 ft. For reference, Figure 7 compares the growth of the three boundary layers in 
terms of displacement thickness 6" as defined below? 
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As is wcll-known, the self-similar boundary laycr on the flat platc grows proportionately to ,,’x*. 
On the other hand, the boundary layer along the cylinder is non-similar because the ‘curvature’ 
K ,  quantified by the ratio K = f * / r $ ,  increases in the streamwise direction due to the growth of d*. 
Provided K 4 1,  as is the case here, the displacement thickness on the cylinder exhibits growth 
much like that of the flat plate. Also as is well-known, the boundary layer on the cone asymptotes 
to a growth rate 1/J3  times that of the flat plate, as predicted by the Mangler transformation.” 
Mangler’s theory ignores transverse curvature and is invalid near thc sharp tip of thc cone, where 
K is large. As noted by Malik and Spall,” the curvature K along the cone decreases in the 
streamwise direction, in contrast to its increase along the cylinder. As they also note, the effect on 
stability of the disparity in scales is that the boundary layer on the cone supports higher 
disturbance frequencies. 

Figure 8(a)- (c) compares, respectively, the temperature, streamwise velocity and wall-normal 
velocity distributions of the cone, cylinder and flat-plate boundary layers at x*  = 3.0 ft. When the 
wall-normal co-ordinate y* is scaled by the appropriate displacement thickness, the temperature 
and stream-wise velocity distributions of the flat plate, hollow cylinder and cone ‘collapse’ and are 
virtually coincident. There is a slight effect due to transverse curvature which tends to produce 
a slightly ‘fuller’ u-velocity profile and a ‘thinner‘ temperature profile with increasing K.  For the 
parameter values of the test case, the curvature K values at x* = 3-0 ft are 0.0,0.0744 and 0.0440, 
for the flat plate, cylinder and cone, respectively. Our principle interest lies in comparison of the 
wall-normal velocities. Whereas the v-velocity in the flat-plate boundary layer is constant at the 
edge, that of the cylinder decays like l /r  in the far field. Otherwise, they are qualitatively similar. 
In contrast to the hollow cylinder and flat plate, the cone has v-velocity which changes sign, is 
negative for large y ,  and has a large, nearly constant gradient in the far field. For comparison, 
Figure 8(c) also shows the inviscid solution for the wall-normal velocity, obtained from the code 
of Marconi and co-workers.20 Note that the far-field boundary-layer solution and the inviscid 
solution have similar trends as anticipated, lending additional confidence in the method. 

To highlight the influence of the differences in wall-normal velocity which are due to geometry, 
it is useful to examine the individual contributions of each of the four terms to the left-hand side of 
continuity equation (28), as shown in Figure 9. For the flat plate [Figure 9(a)]. the third and 
fourth terms vanish, and the first and second terms exactly balance. For the cylinder [Figure 
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9(b)], there is a small non-zero contribution from the fourth term, but the overall picture closely 
resembles that of the flat plate. In contrast, for the cone [Figure 9(c)], terms 1 and 2 approxim- 
ately balance in the near-wall region. However, the third term contains a large contribution in the 
far field which is offset approximately by the far-field contribution of the second term. 

Figure 9(c) has implications for classical linear stability theory, in which the parallel-flow 
approximation plays an important role. In theory, the parallel-flow approximation arises from 
the recognition that the wall-layer mean flow evolves slowly in x relative to the scale of a typical 
disturbance wavelength, in which case certain terms in the linearized disturbance equations are 
‘small’ and can reasonably be neglected. Tn practice (i.e. in stability codes), however, the 
parallel-flow approximation is typically implemented by requiring of the mean flow that 

(30) 

Condition (30) is self-consistent for the boundary-layer flow along a flat plate or a hollow cylinder 
in the sense that a parallel mean flow can simultaneously satisfy continuity equation (28) and 
approximation (30). From Figure 9(c), however, we find that equations (28) and (30) are 
inconsistent for the cone, since the term pu sin $ / r  does not vanish under approximation (30). 
Violation of the continuity equation by the assumption of parallelism in particularly noxious 
since it leads to  inconsistency between the conservative and non-conservative formulations of the 
linearized disturbance equations.’l In fact, Pruett et ~ 1 . ~ ’  have shown rigorously that there is no 
self-consislent parallel-flow approximation for the stability of the flow along a cone. If the 
stability of a conical flow is properly treated only by methods which allow non-parallelism, then 
the wall-normal velocity assumes importance. Consequently, the care which has been devoted 
here to securing an accurate and smooth determination of 11 is not ill-spent. 

6. CONCLUSIONS 

The fully implicit, spectral collocation method developed by Pruett and Streett’ for solution of 
the compressible boundary-layer equations has been extended to incorporate the Levy-Lees3 
transformation and spectrally accurate evaluation of the wall-normal velocity. The Levy -Lees 
transformation is essential to the stability of the numerical method for certain classes of 
compressible boundary-layer flows; however, it renders determination of the wall-normal (c) 
velocity non-trivial. Two methods of determining c’ are presented and are shown to be numer- 
ically equivalent. The generalized algorithm is valid for non-similar, two-dimensional or axisym- 
metric laminar boundary-layer flows with varying edge conditions. Computation on a highly 
resolved mesh results in a discrete solution which satisfies the continuity equation nearly to 
machine precision, while requiring only about 1 s of CPU time per marching step on a Cray 
2 supercomputer. Because of its generality, and the accuracy and smoothness of the discrete 
solution, the present method is well-suited to providing the mean-flow velocity and temperature 
distributions needed for analyses of the stability of compressible boundary-layer flows, whether 
by classical linear stability theory or by recent methods which treat non-parallelism of the mean 
flow. Since mean-flow non-parallelism can significantly affect the stability of high-speed, wall- 
bounded flow,5 the contribution of wall-normal velocity should not be cavalierly disregarded. 
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APPENDIX 

For completeness, we describe briefly a solution procedure for the discrete analogue of integral 
equation (1 1). For fixed (, equation ( 1  1 )  has the form 

Note, by inspection of equation (124, q(O)=O. From (31) we obtain 

4 ( q n ) - 4 ( q n - 1 ) = j q y :  w(q)q(q)dq+(pn-Pn-1) (n=1 ,2 ,3 ,  . . . )  N). (32) 
I 

Following the notations regarding equations (14)-( 16), the discrete approximation of equation 
(32) is 

Mqi=QiWqi+A~i ,  
where W is the N x N diagonal ‘weighting’ matrix 

M is the N x N bidiagonal matrix 

M =  

- 
- 1  
- 1  1 

- 1  1 

- 1  1, 

Q1 is the N x N matrix formed by eliminating the first column of the N x (Ns 1)  numerical 
quadrature operator Q [refer to equation (25)] ,  and Ap, is the N-vector whose components are 
Ap,, =pn-pn- (n = 1,2,3, . . . , N ) .  Simplifying (33), we obtain q1 as the solution to the Nth-order 
linear system 

Aq, = A p l ,  where A r M - Q I W .  (36) 
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